Review of Agricultural Water Use in South Carolina

C. Alex Pellett

Hydrologist, South Carolina Department of Natural Resources

PhD Candidate, Plant and Environmental Sciences, Clemson University

Motivation

- Further research on agricultural water use was recommended by meeting participants during the development of water demand projection methods. (Walker 2018)
- Public comments on the draft projection methods brought up agriculture more than any other sector. (Pellett 2019, appendix C)
- Edisto River Basin Council members requested revisions to the water demand projections for agriculture and not other sectors. (Walker 2020).

Annual Water Use in South Carolina by Sector, 1985-2015

Other Agricultural Water Use

Livestock

~10,000 AFY, not including *irrigation* of forage or feed crops. Estimate derived from livestock counts in USDA Census of Agriculture 2017, tables 12, 19, 28, 29, and 30 and per capita water use estimates from Lovelace (2009).

Aquaculture

1,000 – 2,000 AFY in SCWU, or ~10,000 AFY according to USGS.

Irrigation under protection

60-150 AFY (FRIS 2013 Table 4; IWMS 2018 Table 4)

Dataset	Source	Reporting Unit	Time Period	Kinds of Information	Limitations/Gaps
Water Use Database (SCWU)	SC DHEC	Source water intake	Monthly, 1983-2021	Water withdrawal volume; intake locations.	3 MGM reporting threshold. Changing regulations and compliance. Self-reported values. Farm ponds.
Crop Acreage	USDA FSA	County	Annually, 2009-2022	Total and irrigated acreages for each crop in each county.	Only includes participants in FSA programs.
Census of Agriculture (COA)	USDA NASS	County	5-years, 2002-2017	Total and irrigated acreages for each crop in each county. Livestock counts.	Self-reported values.
Irrigation & Water Management Survey (IWMS)	USDA NASS	State	5-years, 2003-2018	Qualitative detail regarding agricultural water use.	Self-reported values. Small sample size. <50% response rate.
Clemson Irrigation Surveys	Smith, <u>2000;</u> Sawyer 2018.	County	Annually, 1997-2000. Again in 2018	Irrigated acreage by distribution system for each county. 2018 survey includes qualitative detail.	The original survey is out- of-date. The updated survey had a low response rate in some counties.
SC Water Withdrawal Survey	Pellett and Walker, 2018	Withdrawer	One-time survey	Brief questionnaire with optional detailed form.	One time survey of permitted and registered water users. ~50% response rate.
Sprinkler Polygons	Pellett, 2020; Sekaran and Payero 2023	Field Scale	2-years, 2009-2021	Delineations of irrigated area polygons; center pivot geometry.	Lower resolution imagery in earlier years. Limited to visible irrigation

Selected Survey Results (Sawyer et al 2018)

- the average respondent irrigated less than 500 acres, more in the Western and Low Country CUAs;
- over two-thirds of irrigated acres were row crops, with the remaining acreage in turf/hay, orchard, fruits/vegetables, other, or ornamentals, in decreasing order;
- nearly 60% of respondents used fixed-rate center pivots, and less than 10% used variable-rate center pivots;
- over 80% of respondents used fertigation, and over one-third of respondents used chemigation; and,
- over half of respondents intended to expand their irrigated acreage, and only 4% planned to decrease irrigated acreage.

Sawyer, Calvin, Jeffrey Allen, Mathew Smith, Thomas Walker, David Willis, Thomas Dobbins, Derrick Phinney, Kim Counts Morganello, Bryan Smith, Jose Payero, Adam Kantrovich and Nathan Smith (2018) "Agricultural Water Use in South Carolina: Preliminary Results of the South Carolina Agricultural Water Use and Irrigation Survey" Presentation to the South Carolina Water Resources Conference, 17 Oct. 2018

Selected Survey Results (Pellett & Walker 2018)

- over 75% of respondents considered their water supply critically important to their operation;
- over half of respondents were very concerned about water availability in the future;
- about a third of respondents planned to increase water usage in the next five years, and less than 3% planned to decrease; and,
- of those planning increased water use, the majority intended to use groundwater.

Pellett, C. Alex and Walker, Thomas III (2018) "Water Users' Perspectives: Summary of Withdrawal Survey Responses and Commentary," Journal of South Carolina Water Resources: Vol. 5 : Iss. 1 , Article 3. DOI: https://doi.org/10.34068/JSCWR.05.03 Available at: https://tigerprints.clemson.edu/jscwr/vol5/iss1/3

Consumptive Use

- Generally, agricultural water use has been assumed to be 100% consumptive in SC and GA water planning.
- This assumption is questionable, but precise estimates of consumptive use require site-specific information.
- Agricultural water use ranges from 3% 27% of total annual water consumption in SC, generally from 5% 15% in most years.
 - Nix, Heather Bergerud and Rad, Mani Rouhi (2023) "An Introduction to Consumptive Use of Water in South Carolina," Journal of South Carolina Water Resources: Vol. 9 : Iss. 1, Article 10. Available at: https://tigerprints.clemson.edu/jscwr/vol9/iss1/10

Consumptive Use – stakeholder comments

- In some cases, center pivots have been found to be 80-90% consumptive.
- Irrigation through subsurface draintile often results in return flows to surface water and/or infiltration to groundwater. On a state-wide basis, subsurface irrigation is relatively minor and has not been expanding. Subsurface irrigation could be (is?) predominant in some areas of the state (in the Pee Dee basin?).
- Maximum water consumption (evapotranspiration) can be estimated using established methods without the need for field investigation. This could be relevant for water availability models and calculation of safe yield.

Irrigation Depth

Water source				Acre Feet applied							
Year	Ground	Surface	Off-farm	<100	100-199	200-499	500-999	1,000- 1,999	2,000+	Total	
2003	6.9	6.7	2.4	4.1	(D)	6.4	(D)	(D)	(D)	7.0	
2008	9.4	10.9	(D)	4.7	7.0	8.1	9.1	11.5	23.2	9.9	
2013	6.7	6.7	9.4	3.8	4.9	6.4	8.2	8.1	10.9	6.9	
2018	9.7	7.3	10.5	5.5	7.2	7.5	10.7	13.7	11.3	9.7	

Water source data from: FRIS 2003 Table 11; FRIS 2008 Table 11; FRIS 2013 Table 4; IWMS 2018 Table 4 Quantity applied data from: FRIS 2003 Table 12; FRIS 2008 Table 12; FRIS 2013 Table 6; IWMS 2018 Table 7.

- Irrigators who apply greater volumes have tended to irrigate deeper.
- In 2008, the largest volume-class reportedly averaged nearly two feet.
- The largest volume-classes of irrigators might have the best economies of scale to irrigate liberally.
- Consistently, the smallest volume-class has applied lower depths than the overall average.

Discontinuation

	Farms			Acres				
	2003	2008	2013	2018	2003	2008	2013	2018
Permanent discontinuation	26	179	76	131	1,180	1,815	323	249
Sufficient soil moisture	535	7	281	362	23,976	668	31,431	1,389
Irrigation is uneconomical	10	52	53	204	532	124	636	996
Shortage of surface water	-	89	51	25	-	(D)	114	25
Shortage of ground water	-	88	-	-	-	88	-	-
Available surface water too salty	-	-	44	77	-	-	222	351
Converted to non-irrigating agriculture	10	8	15	-	375	80	1,684	-
Converted to non-agricultural uses	-	-	9	-	-	-	9	-
Restrictions on water use	-	-	8	-	-	-	16	-
Loss of water rights	-	-	-	-	-	-	-	-
Sold or leased water rights	-	-	43	-	-	-	172	-
Sold or leased irrigated land		-	-	-	-	-	-	-
Other or unspecified (see text)	273	249	333	25	7,575	3,984	6,756	-
Total	545	353	668	463	24,351	6,092	40,000	2,204

Sources: 2003 FRIS Table 42; 2008 FRIS Table 43; 2013 FRIS Table 27; 2018 IWMS Table 27

Under-reporting in SCWU

The USDA NASS Surveys (IWMS and FRIS) have consistently estimated more irrigators than the number reported in the SCWU database.

Most years, total irrigation volumes have matched closely, with the exception of 2018, when the NASS Survey indicated ~25% more irrigation volume than the SCWU database.

The Coefficient of Variation for irrigation volume in the 2018 IWMS is estimated at 36.7%.

TABLE: Comparison of the number of farms and irrigation volume by water source in IWMS and SCWU data.

	Voor		Irrigators		Volume (AF)		
	real	IWMS	Permittees	Permits	IWMS	SCWU	
	2003	702	132	154	18,041	21,323	
Cround	2008	472	149	179	58,233	59,513	
Ground	2013	697	226	269	57,034	52,652	
	2018	1,109	413	500	175,732	130,700	
Surface	2003	306	98	100	12,243	16,057	
	2008	308	100	105	27,847	35,215	
	2013	217	97	102	18,543	22,122	
	2018	272	97	104	26,313	32,525	
Total	2003	951	191	215	30,332	37,380	
	2008	712	203	238	86,236	94,727	
	2013	1,046	277	325	77,382	74,774	
	2018	1,489	458	554	203,411	163,225	

IWMS data is "Acres in the open" from: FRIS 2003 Table 11; FRIS 2008 Table 11; FRIS 2013 Table 4; IWMS 2018 Table 4

Irrigation below 3 MGM

Small-volume irrigators (<100 AFY) are the only class of irrigators which are consistently under-reported in the SCWU database.

The 3 MGM reporting threshold equals 9.2 AFM.

Perhaps 1,000 irrigators below the 3 MGM threshold, irrigating a total of 2,000 – 5,000 AFY

	Acre Feet			Irrigators		Volume (AF)			
	applied	Year	IWMS	Permittees	Permits	IWMS	Permittees	Permits	
-		2003	900	136	156	6,283	2,656	3,417	
	<100	2008	589	111	126	8,471	3,334	4,144	
	<100	2013	856	181	216	10,567	4,521	5,541	
-		2018	1,156	219	273	13,065	8,000	10,675	
		2003	19	16	22	(D)	2,290	3,011	
	100-100	2008	42	30	40	6,028	4,436	5,958	
	100-199	2013	31	31	39	4,275	4,235	5,428	
-		2018	50	73	101	6,581	10,459	14,263	
		2003	19	19	19	6,633	5,580	5,444	
	200-499	2008	34	21	32	10,320	6,623	9,927	
	200 499	2013	40	31	36	11,990	9,830	11,520	
-		2018	114	87	106	44,263	28,246	33,913	
		2003	6	10	8	(D)	6,320	4,986	
	500-999	2008	28	23	22	18,550	16,098	14,755	
	500-555	2013	26	20	21	18,347	13,730	14,511	
-		2018	68	46	42	45,656	31,001	27,696	
		2003	6	7	7	8,160	9,431	9,418	
	1,000-1,999	2008	14	5	5	19,346	6,045	5,881	
		2013	9	9	7	13,677	12,285	9,297	
-		2018	41	20	19	46,350	26,835	25,628	
		2003	1	3	3	(D)	11,103	11,103	
	2 000+	2008	5	13	13	23,521	58,191	54,063	
	2,000 -	2013	5	5	6	18,378	30,173	28,477	
		2018	11	13	13	47,436	58,683	51,051	

IWMS data is "Acres in the open" from : FRIS 2003 Table 12; FRIS 2008 Table 12; FRIS 2013 Table 6; IWMS Table 7.

250. 200 • Clemson Survey * Thousand Acres 150 Total _____ * **,*** Sprinkler ✻ ***** ···· Other 100 50 *··*··*·* 0 2000 2005 2010 2015 2020

250 -**Clemson Survey** * USGS Water Use ∇ SC Water Use 200 -۲ P FSA Crop Acreage × Thousand Acres NASS Census NASS IWMS Survey \diamond 150 ,¥ Sprinkler Polygons +100 -Total г Sprinkler Other 50 Ś Ø. ٠Ø ᢦ 礆∙ Φ. 0 2000 2005 2010 2015 2020

Irrigated Agricultural Land in Counties Overlying the Pee Dee Basin of South Carolina, 1996-2

Can irrigation continue to expand?

- Irrigators have commented on limited availability of suitable land for center pivot sprinklers.
- Geographic constraints on center pivots do not appear to limit projected growth (44% over 50 years).
- Economic and logistical constraints may reduce growth in the shortterm.
- Medium and long-term agro-economic trends could promote growth.
- Hotter and more variable weather could promote growth.

Geographic Constraints on Center Pivots

Dataset	Source	Constraints
Irrigated Area Polygons	Pellett 2020, Sekaran and Payero	Existing irrigation is a constraint on
	2021	future growth. This dataset is also
		used to evaluate the relevance of the
		other constraints.
Landcover	USGS National Land Cover Dataset,	Open water, wetlands, developed
	Sanchez et al. 2018	areas. Sanchez' projection of future
		development in year 2065 provides
		an estimate of increasing constraints.
Soil	USDA SSURGO	Hydric Soils that are unsuitable for
		agriculture.
Elevation	USGS National Elevation Dataset	Areas with high slope.
Protected Areas	USGS PAD-US	Protected areas may be unavailable
		for agriculture.
Parcels	SCDNR internal dataset	Small parcels may be unsuitable for
		agriculture.

Web Map ranking irrigable areas for projected growth of irrigation